

The 27th Balkan Mathematical Olympiad Chisinau, Republic of Moldova May 2-8, 2010

Grading scheme

Each problem is worth 10 points.

Problem 1

1) For proving, that initial inequality is equivalent to the inequality:3 points				
$\frac{a(b-c)}{c(a+b)} + \frac{b(c-a)}{a(b+c)} + \frac{c(a-b)}{b(c+a)} \ge 0$				
In particular:				
 for substitution of a,b,c by positive x,y,z that gives xyz = 11point for using of this substitution and obtaining the above inequality2points 				
2) For proving, that inequality from 1) is equivalent to the inequality				
$\frac{b(c+a)}{c(a+b)} + \frac{c(a+b)}{a(b+c)} + \frac{a(b+c)}{b(c+a)} \ge 3 $				
3) For proving of inequality from 2)				

The 27th Balkan Mathematical Olympiad Chisinau, Republic of Moldova May 2-8, 2010

Grading scheme

Each problem is worth 10 points.

Problem 2

1)	It is mentioned that quadrilateral $ACBH_1$ is cyclic
2)	For proving that point $N = QC_1 \cap BH_1$ is the midpoint of BH_1
3)	For proving that <i>PMRN</i> is cyclic
4)	For proving that <i>PMRN</i> is cyclic deltoid
5)	For proving that points N and M_1 coincide

Note.

For non proved assertions totally not more than 2 points.

The 27th Balkan Mathematical Olympiad Chisinau, Republic of Moldova May 2-8, 2010

Grading scheme

Each problem is worth 10 points.

Problem 3

The 27th Balkan Mathematical Olympiad Chisinau, Republic of Moldova May 2-8, 2010

Grading scheme

Each problem is worth 10 points.

Problem 4

1)	A counting formula for $f(n)$ is found	2 points
2)	It is proved that the equality $f(n+p) = f(n)$ implies: • $n : p$ • $\varphi(k) = \frac{2(k+1)}{p-1} - 1$ and $\varphi(k+1) = \frac{2(k+1)}{p-1} + 1$	2 points
3)	It is proved that each of the following conditions leads to a contradiction: • $\varphi(k)$: 4 and $\varphi(k+1)$: 4 • $\varphi(k)$! 4 • $\varphi(k+1)$! 4	1 point 1 point