
PROBLEM 1

Let ABCD be a cyclic quadrilateral which is not a trapezoid and whose diagonals
meet at E. The midpoints of AB and CD are F and G respectively, and ` is the line
through G parallel to AB. The feet of the perpendiculars from E onto the lines ` and
CD are H and K, respectively. Prove that the lines EF and HK are perpendicular.

Solution. The points E,K,H,G are on the circle of diameter GE, so

∠EHK = ∠EGK. (†)

Also, from ∠DCA = ∠DBA and CE
CD = BE

BA it follows

CE

CG
=

2CE

CD
=

2BE

BA
=

BE

BF
,

therefore ∆CGE ∼ ∆BFE. In particular, ∠EGC = ∠BFE, so by (†)

∠EHK = ∠BFE.

But HE⊥FB and so, since FE and HK are obtained by rotations of these lines by the
same (directed) angle, FE⊥HK.
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PROBLEM 2

Given real numbers x, y, z such that x+ y + z = 0, show that

x(x+ 2)

2x2 + 1
+

y(y + 2)

2y2 + 1
+

z(z + 2)

2z2 + 1
≥ 0.

When does equality hold?

Solution. The inequality is clear if xyz = 0, in which case equality holds if and only
if x = y = z = 0.

Henceforth assume xyz 6= 0 and rewrite the inequality as

(2x+ 1)2

2x2 + 1
+

(2y + 1)2

2y2 + 1
+

(2z + 1)2

2z2 + 1
≥ 3.

Notice that (exactly) one of the products xy, yz, zx is positive, say yz > 0, to get

(2y + 1)2

2y2 + 1
+

(2z + 1)2

2z2 + 1
≥ 2(y + z + 1)2

y2 + z2 + 1
(by Jensen)

=
2(x− 1)2

x2 − 2yz + 1
(for x+ y + z = 0)

≥ 2(x− 1)2

x2 + 1
. (for yz > 0)

Here equality holds if and only if x = 1 and y = z = −1/2. Finally, since

(2x+ 1)2

2x2 + 1
+

2(x− 1)2

x2 + 1
− 3 =

2x2(x− 1)2

(2x2 + 1)(x2 + 1)
≥ 0, x ∈ R,

the conclusion follows. Clearly, equality holds if and only if x = 1, so y = z = −1/2.
Therefore, if xyz 6= 0, equality holds if and only if one of the numbers is 1, and the other
two are −1/2.
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PROBLEM 3

Let S be a finite set of positive integers which has the following property: if x is a
member of S, then so are all positive divisors of x. A non-empty subset T of S is good if
whenever x, y ∈ T and x < y, the ratio y/x is a power of a prime number. A non-empty
subset T of S is bad if whenever x, y ∈ T and x < y, the ratio y/x is not a power of a
prime number. We agree that a singleton subset of S is both good and bad. Let k be
the largest possible size of a good subset of S. Prove that k is also the smallest number
of pairwise-disjoint bad subsets whose union is S.

Solution. Notice first that a bad subset of S contains at most one element from a
good one, to deduce that a partition of S into bad subsets has at least as many members
as a maximal good subset.

Notice further that the elements of a good subset of S must be among the terms of a
geometric sequence whose ratio is a prime: if x < y < z are elements of a good subset
of S, then y = xpα and z = yqβ = xpαqβ for some primes p and q and some positive
integers α and β, so p = q for z/x to be a power of a prime.

Next, let P = {2, 3, 5, 7, 11, · · · } denote the set of all primes, let

m = max {expp x : x ∈ S and p ∈ P},

where expp x is the exponent of the prime p in the canonical decomposition of x, and
notice that a maximal good subset of S must be of the form {a, ap, · · · , apm} for some
prime p and some positive integer a which is not divisible by p. Consequently, a maximal
good subset of S has m + 1 elements, so a partition of S into bad subsets has at least
m+ 1 members.

Finally, notice by maximality of m that the sets

Sk = {x : x ∈ S and
∑
p∈P

expp x ≡ k (mod m+ 1)}, k = 0, 1, · · · ,m,

form a partition of S into m+ 1 bad subsets. The conclusion follows.
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PROBLEM 4

Let ABCDEF be a convex hexagon of area 1, whose opposite sides are parallel. The
lines AB, CD and EF meet in pairs to determine the vertices of a triangle. Similarly,
the lines BC, DE and FA meet in pairs to determine the vertices of another triangle.
Show that the area of at least one of these two triangles is at least 3/2.

Solution. Unless otherwise stated, throughout the proof indices take on values from
0 to 5 and are reduced modulo 6. Label the vertices of the hexagon in circular order,
A0, A1, · · · , A5, and let the lines of support of the alternate sides AiAi+1 and Ai+2Ai+3

meet at Bi. To show that the area of at least one of the triangles B0B2B4, B1B3B5

is greater than or equal to 3/2, it is sufficient to prove that the total area of the six
triangles Ai+1BiAi+2 is at least 1:

5∑
i=0

areaAi+1BiAi+2 ≥ 1.

To begin with, reflect each Bi through the midpoint of the segment Ai+1Ai+2 to get the
points B′

i. We shall prove that the six triangles Ai+1B
′
iAi+2 cover the hexagon. To this

end, reflect A2i+1 through the midpoint of the segment A2iA2i+2 to get the points A′
2i+1,

i = 0, 1, 2. The hexagon splits into three parallelograms, A2iA2i+1A2i+2A
′
2i+1, i = 0, 1, 2,

and a (possibly degenerate) triangle, A′
1A

′
3A

′
5. Notice first that each parallelogram

A2iA2i+1A2i+2A
′
2i+1 is covered by the pair of triangles (A2iB

′
2i+5A2i+1, A2i+1B

′
2iA2i+2),

i = 0, 1, 2. The proof is completed by showing that at least one of these pairs contains
a triangle that covers the triangle A′

1A
′
3A

′
5. To this end, it is sufficient to prove that

A2iB
′
2i+5 ≥ A2iA

′
2i+5 and A2j+2B

′
2j ≥ A2j+2A

′
2j+3 for some indices i, j ∈ {0, 1, 2}. To

establish the first inequality, notice that

A2iB
′
2i+5 = A2i+1B2i+5, A2iA

′
2i+5 = A2i+4A2i+5, i = 0, 1, 2,

A1B5

A4A5
=

A0B5

A5B3
and

A3B1

A0A1
=

A2A3

A0B5
,

to get
2∏

i=0

A2iB
′
2i+5

A2iA′
2i+5

= 1.

Similarly,
2∏

j=0

A2j+2B
′
2j

A2j+2A′
2j+3

= 1,

whence the conclusion.
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