Language: English

Problem 1. Find all ordered pairs (a, b) of positive integers for which the numbers $\frac{a^{3} b-1}{a+1}$ and $\frac{b^{3} a+1}{b-1}$ are both positive integers.

Problem 2. Let $A B C$ be an acute triangle with $A B<A C$ and O be the center of its circumcircle ω. Let D be a point on the line segment $B C$ such that $\angle B A D=\angle C A O$. Let E be the second point of intersection of ω and the line $A D$. If M, N and P are the midpoints of the line segments $B E, O D$ and $A C$, respectively, show that the points M, N and P are collinear.

Problem 3. Show that

$$
\left(a+2 b+\frac{2}{a+1}\right)\left(b+2 a+\frac{2}{b+1}\right) \geq 16
$$

for all positive real numbers a and b such that $a b \geq 1$.

Problem 4. Let n be a positive integer. Two players, Alice and Bob, are playing the following game:

- Alice chooses n real numbers, not necessarily distinct
- Alice writes all pairwise sums on a sheet of paper and gives it to Bob (there are $\frac{n(n-1)}{2}$ such sums, not necessarily distinct)
- Bob wins if he finds correctly the initial n numbers chosen by Alice with only one guess Can Bob be sure to win for the following cases?
a. $n=5$
b. $n=6$
c. $n=8$

Justify your answer(s).
[For example, when $n=4$, Alice may choose the numbers 1, 5, 7, 9, which have the same pairwise sums as the numbers $2,4,6,10$, and hence Bob cannot be sure to win.]

Each problem is worth 10 points.

